Effect of genistein on steroidogenic response of granulosa cell populations from porcine preovulatory follicles.
نویسندگان
چکیده
Genistein affects reproductive processes in animals. However, the mechanism of its action is not fully elucidated and differs among species. The objectives of the current study were: 1/ to establish an in vitro model of granulosa cell culture for studying the intracellular mechanism of phytoestrogen action in porcine ovary; 2/ to determine an in vitro effect of genistein on basal and FSH-stimulated P(4) and E(2) production by porcine granulosa cell populations (antral, mural, total) isolated from large, preovulatory follicles. Granulosa cells were isolated from large (> or =8 mm), preovulatory follicles and separated into antral and mural cell subpopulations. Cells were allowed to attach for 72 h (37 degrees Celsius, 10% serum, 95% air/5% CO2) and than cultured for next 48 hours with or without serum (0, 5 and 10%), FSH (0, 10 or 100 ng/ml) and genistein (0, 0.5, 5 or 50 microM). Basal P(4) and E(2) production did not differ among antral, mural and unseparated granulosa cells isolated form porcine preovulatory follicles. Only mural cells tended to secrete less P(4) and E(2) than other cell populations. FSH stimulated P(4) production in a dose dependent manner in all cell populations and culture systems. Genistein inhibited in a dose dependent manner basal and FSH-stimulated P(4) production by antral, mural and unseparated granulosa cells. However, genistein did not affect E(2) production by granulosa cells. In addition, viability of porcine granulosa cells was not affected by the pyhytoestrogen except the highest dose of genistein. It appears that genistein may be involved in the regulation of follicular function in pigs. Moreover, unseparated porcine granulosa cells may provide a suitable in vitro model for studying the intracellular mechanism of phytoestrogen action in porcine ovary.
منابع مشابه
The Effects of Phytoestrogen Genistein on Steroidogenesis and Estrogen Receptor Expression in Porcine Granulosa Cells of Large Follicles.
Genistein is a biologically active isoflavone with estrogenic or antiestrogenic activity which can be found in a variety of soy products. Since in pigs' diet soy is the main source of protein, genistein may affect the reproductive/endocrine systems in these animals. Genistein has been shown to alter porcine ovarian and adrenal steroidogenesis but the mechanism of this action is still not clear....
متن کاملElectron microscopy of cytodifferentiation and its subcellular steroidogenic sites in the granulosa cells of the human ovary.
The cytodifferentiation and subcellular steroidogenic sites in the granulosa cell of the developing follicle and in vitro effect of estradiol-17 ~ (E2) on the granulosa cell of the preovulatory follicle in the human ovary were investigated using the electron microscopic cytochemistry. The follicular cell in the primordial follicle showed an elongated nucleus, rough endoplasmic reticulum, Golgi ...
متن کاملRegulation of steroidogenic acute regulatory protein and luteinizing hormone receptor messenger ribonucleic acid in hen granulosa cells.
The regulation of steroidogenic acute regulatory protein (StAR) in vitro by gonadotropins was investigated in granulosa cells from prehierarchal and preovulatory hen follicles. Basal levels of StAR messenger RNA (mRNA) in undifferentiated granulosa cells from prehierarchal (6- to 8-mm) follicles were consistently low, but detectable, and were significantly increased by treatment with 8-bromo-cA...
متن کاملPregnancy-associated plasma protein-A (PAPP-A) in ovine, bovine, porcine, and equine ovarian follicles: involvement in IGF binding protein-4 proteolytic degradation and mRNA expression during follicular development.
IGF binding protein-4 (IGFBP-4) proteolytic degradation is a common feature of preovulatory follicles from human, ovine, bovine, porcine, and equine ovary. In all these species, the protease is a zinc-dependent metalloprotease and its ability to degrade IGFBP-4 is IGF dependent. The human intrafollicular IGFBP-4-degrading protease has recently been identified as pregnancy-associated plasma prot...
متن کاملLuteinization factor-stimulated steroidogenesis in porcine granulosa cells.
Luteinization stimulator (LS), an intrafollicular compound of preovulatory (5-8 mm) follicles, increased both the basal and gonadotropins-stimulated production of progesterone by immature (1-3 mm) granulosa cells. The mechanism by which LS enhance steroidogenesis was investigated by studying the modulation of progesterone biosynthesis from exogenous cholesterol and pregnenolone in cultured porc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reproductive biology
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2006